Frequency analysis based on C3D8R element NOT WORK!

Dear All,
I’m doing frequency analysis for an elastic wedge. The geometric model is shown in Figure 1, only the base plates of the wedge was modelled. The nodes circled with red circles in Figure 1 are subjected to pinned-pinned boundary conditions. The 3,4,5 degrees of freedom of the remaining nodes are restricted based on the two-dimensional assumptions. The finite element mesh is shown in Figure 2.I have tried modelling the problem using beam element B32R and can calculate the modes correctly. However, when the mesh type was modified to C3D8R, the frequency analysis failed. I’ve attached the .inp file here. In addition, the log file for the failed frequency analysis run is also attached below. I would appreciate it if someone could provide some ideas. :wink: :smiley:
Figure1


frequency.inp

*NODE, NSET=Nall
      1, -0.489278197,   0.10455063, 0.00499999989
      2, -0.492403865, 0.0868240893, 0.00499999989
      3, -0.469707072,  0.101099707, 0.00499999989
      4, -0.472707719, 0.0833511278, 0.00499999989
      5, -0.450135946,  0.097648792, 0.00499999989
      6, -0.453011572, 0.0798781589, 0.00499999989
      7, -0.430564821, 0.0941978768, 0.00499999989
      8, -0.433315426, 0.0764051974, 0.00499999989
      9, -0.410993695, 0.0907469541, 0.00499999989
     10,  -0.41361925, 0.0729322359, 0.00499999989
     11,  -0.39142257, 0.0872960389, 0.00499999989
     12, -0.393923104, 0.0694592744, 0.00499999989
     13, -0.371851444, 0.0838451236, 0.00499999989
     14, -0.374226958, 0.0659863055, 0.00499999989
     15, -0.352280319,  0.080394201, 0.00499999989
     16, -0.354530782,  0.062513344, 0.00499999989
     17, -0.332709193, 0.0769432858, 0.00499999989
     18, -0.334834635, 0.0590403788, 0.00499999989
     19, -0.313138068, 0.0734923631, 0.00499999989
     20, -0.315138489, 0.0555674173, 0.00499999989
     21, -0.293566912, 0.0700414479, 0.00499999989
     22, -0.295442313, 0.0520944521, 0.00499999989
     23, -0.273995787, 0.0665905327, 0.00499999989
     24, -0.275746167, 0.0486214906, 0.00499999989
     25, -0.254424661,   0.06313961, 0.00499999989
     26,  -0.25605002, 0.0451485254, 0.00499999989
     27, -0.234853536, 0.0596886948, 0.00499999989
     28, -0.236353859, 0.0416755639, 0.00499999989
     29,  -0.21528241, 0.0562377758, 0.00499999989
     30, -0.216657713, 0.0382025987, 0.00499999989
     31, -0.195711285, 0.0527868606, 0.00499999989
     32, -0.196961552, 0.0347296372, 0.00499999989
     33, -0.176140159, 0.0493359417, 0.00499999989
     34, -0.177265391,  0.031256672, 0.00499999989
     35, -0.156569034, 0.0458850227, 0.00499999989
     36, -0.157569245, 0.0277837086, 0.00499999989
     37, -0.136997893, 0.0424341038, 0.00499999989
     38, -0.137873083, 0.0243107453, 0.00499999989
     39, -0.117426768, 0.0389831886, 0.00499999989
     40,  -0.11817693,  0.020837782, 0.00499999989
     41, -0.0978556424, 0.0355322696, 0.00499999989
     42, -0.098480776, 0.0173648186, 0.00499999989
     43, -0.0782845169, 0.0320813507, 0.00499999989
     44, -0.0787846223, 0.0138918543, 0.00499999989
     45, -0.058713384, 0.0286304336, 0.00499999989
     46, -0.0590884648,  0.010418891, 0.00499999989
     47, -0.0391422585, 0.0251795147, 0.00499999989
     48, -0.0393923111, 0.00694592716, 0.00499999989
     49, -0.0195711292, 0.0217285976, 0.00499999989
     50, -0.0196961556, 0.00347296358, 0.00499999989
     51,           0., 0.0182776786, 0.00499999989
     52,           0.,           0., 0.00499999989
     53, 0.0195711292, 0.0217285976, 0.00499999989
     54, 0.0196961556, 0.00347296358, 0.00499999989
     55, 0.0391422585, 0.0251795147, 0.00499999989
     56, 0.0393923111, 0.00694592716, 0.00499999989
     57,  0.058713384, 0.0286304336, 0.00499999989
     58, 0.0590884648,  0.010418891, 0.00499999989
     59, 0.0782845169, 0.0320813507, 0.00499999989
     60, 0.0787846223, 0.0138918543, 0.00499999989
     61, 0.0978556424, 0.0355322696, 0.00499999989
     62,  0.098480776, 0.0173648186, 0.00499999989
     63,  0.117426768, 0.0389831886, 0.00499999989
     64,   0.11817693,  0.020837782, 0.00499999989
     65,  0.136997893, 0.0424341038, 0.00499999989
     66,  0.137873083, 0.0243107453, 0.00499999989
     67,  0.156569034, 0.0458850227, 0.00499999989
     68,  0.157569245, 0.0277837086, 0.00499999989
     69,  0.176140159, 0.0493359417, 0.00499999989
     70,  0.177265391,  0.031256672, 0.00499999989
     71,  0.195711285, 0.0527868606, 0.00499999989
     72,  0.196961552, 0.0347296372, 0.00499999989
     73,   0.21528241, 0.0562377758, 0.00499999989
     74,  0.216657713, 0.0382025987, 0.00499999989
     75,  0.234853536, 0.0596886948, 0.00499999989
     76,  0.236353859, 0.0416755639, 0.00499999989
     77,  0.254424661,   0.06313961, 0.00499999989
     78,   0.25605002, 0.0451485254, 0.00499999989
     79,  0.273995787, 0.0665905327, 0.00499999989
     80,  0.275746167, 0.0486214906, 0.00499999989
     81,  0.293566912, 0.0700414479, 0.00499999989
     82,  0.295442313, 0.0520944521, 0.00499999989
     83,  0.313138068, 0.0734923631, 0.00499999989
     84,  0.315138489, 0.0555674173, 0.00499999989
     85,  0.332709193, 0.0769432858, 0.00499999989
     86,  0.334834635, 0.0590403788, 0.00499999989
     87,  0.352280319,  0.080394201, 0.00499999989
     88,  0.354530782,  0.062513344, 0.00499999989
     89,  0.371851444, 0.0838451236, 0.00499999989
     90,  0.374226958, 0.0659863055, 0.00499999989
     91,   0.39142257, 0.0872960389, 0.00499999989
     92,  0.393923104, 0.0694592744, 0.00499999989
     93,  0.410993695, 0.0907469541, 0.00499999989
     94,   0.41361925, 0.0729322359, 0.00499999989
     95,  0.430564821, 0.0941978768, 0.00499999989
     96,  0.433315426, 0.0764051974, 0.00499999989
     97,  0.450135946,  0.097648792, 0.00499999989
     98,  0.453011572, 0.0798781589, 0.00499999989
     99,  0.469707072,  0.101099707, 0.00499999989
    100,  0.472707719, 0.0833511278, 0.00499999989
    101,  0.489278197,   0.10455063, 0.00499999989
    102,  0.492403865, 0.0868240893, 0.00499999989
    103, -0.489278197,   0.10455063, -0.00499999989
    104, -0.492403865, 0.0868240893, -0.00499999989
    105, -0.469707072,  0.101099707, -0.00499999989
    106, -0.472707719, 0.0833511278, -0.00499999989
    107, -0.450135946,  0.097648792, -0.00499999989
    108, -0.453011572, 0.0798781589, -0.00499999989
    109, -0.430564821, 0.0941978768, -0.00499999989
    110, -0.433315426, 0.0764051974, -0.00499999989
    111, -0.410993695, 0.0907469541, -0.00499999989
    112,  -0.41361925, 0.0729322359, -0.00499999989
    113,  -0.39142257, 0.0872960389, -0.00499999989
    114, -0.393923104, 0.0694592744, -0.00499999989
    115, -0.371851444, 0.0838451236, -0.00499999989
    116, -0.374226958, 0.0659863055, -0.00499999989
    117, -0.352280319,  0.080394201, -0.00499999989
    118, -0.354530782,  0.062513344, -0.00499999989
    119, -0.332709193, 0.0769432858, -0.00499999989
    120, -0.334834635, 0.0590403788, -0.00499999989
    121, -0.313138068, 0.0734923631, -0.00499999989
    122, -0.315138489, 0.0555674173, -0.00499999989
    123, -0.293566912, 0.0700414479, -0.00499999989
    124, -0.295442313, 0.0520944521, -0.00499999989
    125, -0.273995787, 0.0665905327, -0.00499999989
    126, -0.275746167, 0.0486214906, -0.00499999989
    127, -0.254424661,   0.06313961, -0.00499999989
    128,  -0.25605002, 0.0451485254, -0.00499999989
    129, -0.234853536, 0.0596886948, -0.00499999989
    130, -0.236353859, 0.0416755639, -0.00499999989
    131,  -0.21528241, 0.0562377758, -0.00499999989
    132, -0.216657713, 0.0382025987, -0.00499999989
    133, -0.195711285, 0.0527868606, -0.00499999989
    134, -0.196961552, 0.0347296372, -0.00499999989
    135, -0.176140159, 0.0493359417, -0.00499999989
    136, -0.177265391,  0.031256672, -0.00499999989
    137, -0.156569034, 0.0458850227, -0.00499999989
    138, -0.157569245, 0.0277837086, -0.00499999989
    139, -0.136997893, 0.0424341038, -0.00499999989
    140, -0.137873083, 0.0243107453, -0.00499999989
    141, -0.117426768, 0.0389831886, -0.00499999989
    142,  -0.11817693,  0.020837782, -0.00499999989
    143, -0.0978556424, 0.0355322696, -0.00499999989
    144, -0.098480776, 0.0173648186, -0.00499999989
    145, -0.0782845169, 0.0320813507, -0.00499999989
    146, -0.0787846223, 0.0138918543, -0.00499999989
    147, -0.058713384, 0.0286304336, -0.00499999989
    148, -0.0590884648,  0.010418891, -0.00499999989
    149, -0.0391422585, 0.0251795147, -0.00499999989
    150, -0.0393923111, 0.00694592716, -0.00499999989
    151, -0.0195711292, 0.0217285976, -0.00499999989
    152, -0.0196961556, 0.00347296358, -0.00499999989
    153,           0., 0.0182776786, -0.00499999989
    154,           0.,           0., -0.00499999989
    155, 0.0195711292, 0.0217285976, -0.00499999989
    156, 0.0196961556, 0.00347296358, -0.00499999989
    157, 0.0391422585, 0.0251795147, -0.00499999989
    158, 0.0393923111, 0.00694592716, -0.00499999989
    159,  0.058713384, 0.0286304336, -0.00499999989
    160, 0.0590884648,  0.010418891, -0.00499999989
    161, 0.0782845169, 0.0320813507, -0.00499999989
    162, 0.0787846223, 0.0138918543, -0.00499999989
    163, 0.0978556424, 0.0355322696, -0.00499999989
    164,  0.098480776, 0.0173648186, -0.00499999989
    165,  0.117426768, 0.0389831886, -0.00499999989
    166,   0.11817693,  0.020837782, -0.00499999989
    167,  0.136997893, 0.0424341038, -0.00499999989
    168,  0.137873083, 0.0243107453, -0.00499999989
    169,  0.156569034, 0.0458850227, -0.00499999989
    170,  0.157569245, 0.0277837086, -0.00499999989
    171,  0.176140159, 0.0493359417, -0.00499999989
    172,  0.177265391,  0.031256672, -0.00499999989
    173,  0.195711285, 0.0527868606, -0.00499999989
    174,  0.196961552, 0.0347296372, -0.00499999989
    175,   0.21528241, 0.0562377758, -0.00499999989
    176,  0.216657713, 0.0382025987, -0.00499999989
    177,  0.234853536, 0.0596886948, -0.00499999989
    178,  0.236353859, 0.0416755639, -0.00499999989
    179,  0.254424661,   0.06313961, -0.00499999989
    180,   0.25605002, 0.0451485254, -0.00499999989
    181,  0.273995787, 0.0665905327, -0.00499999989
    182,  0.275746167, 0.0486214906, -0.00499999989
    183,  0.293566912, 0.0700414479, -0.00499999989
    184,  0.295442313, 0.0520944521, -0.00499999989
    185,  0.313138068, 0.0734923631, -0.00499999989
    186,  0.315138489, 0.0555674173, -0.00499999989
    187,  0.332709193, 0.0769432858, -0.00499999989
    188,  0.334834635, 0.0590403788, -0.00499999989
    189,  0.352280319,  0.080394201, -0.00499999989
    190,  0.354530782,  0.062513344, -0.00499999989
    191,  0.371851444, 0.0838451236, -0.00499999989
    192,  0.374226958, 0.0659863055, -0.00499999989
    193,   0.39142257, 0.0872960389, -0.00499999989
    194,  0.393923104, 0.0694592744, -0.00499999989
    195,  0.410993695, 0.0907469541, -0.00499999989
    196,   0.41361925, 0.0729322359, -0.00499999989
    197,  0.430564821, 0.0941978768, -0.00499999989
    198,  0.433315426, 0.0764051974, -0.00499999989
    199,  0.450135946,  0.097648792, -0.00499999989
    200,  0.453011572, 0.0798781589, -0.00499999989
    201,  0.469707072,  0.101099707, -0.00499999989
    202,  0.472707719, 0.0833511278, -0.00499999989
    203,  0.489278197,   0.10455063, -0.00499999989
    204,  0.492403865, 0.0868240893, -0.00499999989
*ELEMENT, TYPE=C3D8R, ELSET=Eall
 1,   3,   4,   2,   1, 105, 106, 104, 103
 2,   5,   6,   4,   3, 107, 108, 106, 105
 3,   7,   8,   6,   5, 109, 110, 108, 107
 4,   9,  10,   8,   7, 111, 112, 110, 109
 5,  11,  12,  10,   9, 113, 114, 112, 111
 6,  13,  14,  12,  11, 115, 116, 114, 113
 7,  15,  16,  14,  13, 117, 118, 116, 115
 8,  17,  18,  16,  15, 119, 120, 118, 117
 9,  19,  20,  18,  17, 121, 122, 120, 119
10,  21,  22,  20,  19, 123, 124, 122, 121
11,  23,  24,  22,  21, 125, 126, 124, 123
12,  25,  26,  24,  23, 127, 128, 126, 125
13,  27,  28,  26,  25, 129, 130, 128, 127
14,  29,  30,  28,  27, 131, 132, 130, 129
15,  31,  32,  30,  29, 133, 134, 132, 131
16,  33,  34,  32,  31, 135, 136, 134, 133
17,  35,  36,  34,  33, 137, 138, 136, 135
18,  37,  38,  36,  35, 139, 140, 138, 137
19,  39,  40,  38,  37, 141, 142, 140, 139
20,  41,  42,  40,  39, 143, 144, 142, 141
21,  43,  44,  42,  41, 145, 146, 144, 143
22,  45,  46,  44,  43, 147, 148, 146, 145
23,  47,  48,  46,  45, 149, 150, 148, 147
24,  49,  50,  48,  47, 151, 152, 150, 149
25,  51,  52,  50,  49, 153, 154, 152, 151
26,  53,  54,  52,  51, 155, 156, 154, 153
27,  55,  56,  54,  53, 157, 158, 156, 155
28,  57,  58,  56,  55, 159, 160, 158, 157
29,  59,  60,  58,  57, 161, 162, 160, 159
30,  61,  62,  60,  59, 163, 164, 162, 161
31,  63,  64,  62,  61, 165, 166, 164, 163
32,  65,  66,  64,  63, 167, 168, 166, 165
33,  67,  68,  66,  65, 169, 170, 168, 167
34,  69,  70,  68,  67, 171, 172, 170, 169
35,  71,  72,  70,  69, 173, 174, 172, 171
36,  73,  74,  72,  71, 175, 176, 174, 173
37,  75,  76,  74,  73, 177, 178, 176, 175
38,  77,  78,  76,  75, 179, 180, 178, 177
39,  79,  80,  78,  77, 181, 182, 180, 179
40,  81,  82,  80,  79, 183, 184, 182, 181
41,  83,  84,  82,  81, 185, 186, 184, 183
42,  85,  86,  84,  83, 187, 188, 186, 185
43,  87,  88,  86,  85, 189, 190, 188, 187
44,  89,  90,  88,  87, 191, 192, 190, 189
45,  91,  92,  90,  89, 193, 194, 192, 191
46,  93,  94,  92,  91, 195, 196, 194, 193
47,  95,  96,  94,  93, 197, 198, 196, 195
48,  97,  98,  96,  95, 199, 200, 198, 197
49,  99, 100,  98,  97, 201, 202, 200, 199
50, 101, 102, 100,  99, 203, 204, 202, 201
** 支点
*Nset, nset=ThreePoints
   1,   2,  51,  52, 101, 102, 103, 104, 153, 154, 203, 204
** 除了支点的其余节点
*Nset, nset=Others
   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16,  17,  18
  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,  33,  34
  35,  36,  37,  38,  39,  40,  41,  42,  43,  44,  45,  46,  47,  48,  49,  50
  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68
  69,  70,  71,  72,  73,  74,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84
  85,  86,  87,  88,  89,  90,  91,  92,  93,  94,  95,  96,  97,  98,  99, 100
 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136
 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170
 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186
 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202
*MATERIAL, Name=EL
*ELASTIC
 2.1e+11, 0.3
*DENSITY
7850

*SOLID SECTION, Elset=Eall, Material=EL

*STEP
*FREQUENCY,STORAGE=YES
20

** BOUNDARY CONDITIONS**定义其余点不发生平面外运动
*Boundary
ThreePoints, 1, 1, 0 
ThreePoints, 2, 2, 0 
ThreePoints, 3, 3, 0 
ThreePoints, 4, 4, 0 
ThreePoints, 5, 5, 0
Others, 3, 3, 0 
Others, 4, 4, 0 
Others, 5, 5, 0 
** 
** OUTPUT REQUESTS
*NODE FILE
 U
*EL FILE
 S, E
*END STEP

log.frequency


************************************************************

CalculiX Version 2.20, Copyright(C) 1998-2022 Guido Dhondt
CalculiX comes with ABSOLUTELY NO WARRANTY. This is free
software, and you are welcome to redistribute it under
certain conditions, see gpl.htm

************************************************************

You are using an executable made on Sun Jul 31 18:08:37 CEST 2022

  The numbers below are estimated upper bounds

  number of:

   nodes:          204
   elements:           50
   one-dimensional elements:            0
   two-dimensional elements:            0
   integration points per element:            1
   degrees of freedom per node:            3
   layers per element:            1

   distributed facial loads:            0
   distributed volumetric loads:            0
   concentrated loads:            0
   single point constraints:          636
   multiple point constraints:            1
   terms in all multiple point constraints:            1
   tie constraints:            0
   dependent nodes tied by cyclic constraints:            0
   dependent nodes in pre-tension constraints:            0

   sets:            4
   terms in all sets:          662

   materials:            1
   constants per material and temperature:            2
   temperature points per material:            1
   plastic data points per material:            0

   orientations:            0
   amplitudes:            1
   data points in all amplitudes:            1
   print requests:            0
   transformations:            0
   property cards:            0


 STEP            1

 Frequency analysis was selected

Solid elements don’t have rotational DOFs (4-6). If you eliminate the boundary conditions applied to them, the analysis will work.

That’s it. Thank you very much for your prompt reply.