Dear All,
I’m doing frequency analysis for an elastic wedge. The geometric model is shown in Figure 1, only the base plates of the wedge was modelled. The nodes circled with red circles in Figure 1 are subjected to pinned-pinned boundary conditions. The 3,4,5 degrees of freedom of the remaining nodes are restricted based on the two-dimensional assumptions. The finite element mesh is shown in Figure 2.I have tried modelling the problem using beam element B32R and can calculate the modes correctly. However, when the mesh type was modified to C3D8R, the frequency analysis failed. I’ve attached the .inp file here. In addition, the log file for the failed frequency analysis run is also attached below. I would appreciate it if someone could provide some ideas.
frequency.inp
*NODE, NSET=Nall
1, -0.489278197, 0.10455063, 0.00499999989
2, -0.492403865, 0.0868240893, 0.00499999989
3, -0.469707072, 0.101099707, 0.00499999989
4, -0.472707719, 0.0833511278, 0.00499999989
5, -0.450135946, 0.097648792, 0.00499999989
6, -0.453011572, 0.0798781589, 0.00499999989
7, -0.430564821, 0.0941978768, 0.00499999989
8, -0.433315426, 0.0764051974, 0.00499999989
9, -0.410993695, 0.0907469541, 0.00499999989
10, -0.41361925, 0.0729322359, 0.00499999989
11, -0.39142257, 0.0872960389, 0.00499999989
12, -0.393923104, 0.0694592744, 0.00499999989
13, -0.371851444, 0.0838451236, 0.00499999989
14, -0.374226958, 0.0659863055, 0.00499999989
15, -0.352280319, 0.080394201, 0.00499999989
16, -0.354530782, 0.062513344, 0.00499999989
17, -0.332709193, 0.0769432858, 0.00499999989
18, -0.334834635, 0.0590403788, 0.00499999989
19, -0.313138068, 0.0734923631, 0.00499999989
20, -0.315138489, 0.0555674173, 0.00499999989
21, -0.293566912, 0.0700414479, 0.00499999989
22, -0.295442313, 0.0520944521, 0.00499999989
23, -0.273995787, 0.0665905327, 0.00499999989
24, -0.275746167, 0.0486214906, 0.00499999989
25, -0.254424661, 0.06313961, 0.00499999989
26, -0.25605002, 0.0451485254, 0.00499999989
27, -0.234853536, 0.0596886948, 0.00499999989
28, -0.236353859, 0.0416755639, 0.00499999989
29, -0.21528241, 0.0562377758, 0.00499999989
30, -0.216657713, 0.0382025987, 0.00499999989
31, -0.195711285, 0.0527868606, 0.00499999989
32, -0.196961552, 0.0347296372, 0.00499999989
33, -0.176140159, 0.0493359417, 0.00499999989
34, -0.177265391, 0.031256672, 0.00499999989
35, -0.156569034, 0.0458850227, 0.00499999989
36, -0.157569245, 0.0277837086, 0.00499999989
37, -0.136997893, 0.0424341038, 0.00499999989
38, -0.137873083, 0.0243107453, 0.00499999989
39, -0.117426768, 0.0389831886, 0.00499999989
40, -0.11817693, 0.020837782, 0.00499999989
41, -0.0978556424, 0.0355322696, 0.00499999989
42, -0.098480776, 0.0173648186, 0.00499999989
43, -0.0782845169, 0.0320813507, 0.00499999989
44, -0.0787846223, 0.0138918543, 0.00499999989
45, -0.058713384, 0.0286304336, 0.00499999989
46, -0.0590884648, 0.010418891, 0.00499999989
47, -0.0391422585, 0.0251795147, 0.00499999989
48, -0.0393923111, 0.00694592716, 0.00499999989
49, -0.0195711292, 0.0217285976, 0.00499999989
50, -0.0196961556, 0.00347296358, 0.00499999989
51, 0., 0.0182776786, 0.00499999989
52, 0., 0., 0.00499999989
53, 0.0195711292, 0.0217285976, 0.00499999989
54, 0.0196961556, 0.00347296358, 0.00499999989
55, 0.0391422585, 0.0251795147, 0.00499999989
56, 0.0393923111, 0.00694592716, 0.00499999989
57, 0.058713384, 0.0286304336, 0.00499999989
58, 0.0590884648, 0.010418891, 0.00499999989
59, 0.0782845169, 0.0320813507, 0.00499999989
60, 0.0787846223, 0.0138918543, 0.00499999989
61, 0.0978556424, 0.0355322696, 0.00499999989
62, 0.098480776, 0.0173648186, 0.00499999989
63, 0.117426768, 0.0389831886, 0.00499999989
64, 0.11817693, 0.020837782, 0.00499999989
65, 0.136997893, 0.0424341038, 0.00499999989
66, 0.137873083, 0.0243107453, 0.00499999989
67, 0.156569034, 0.0458850227, 0.00499999989
68, 0.157569245, 0.0277837086, 0.00499999989
69, 0.176140159, 0.0493359417, 0.00499999989
70, 0.177265391, 0.031256672, 0.00499999989
71, 0.195711285, 0.0527868606, 0.00499999989
72, 0.196961552, 0.0347296372, 0.00499999989
73, 0.21528241, 0.0562377758, 0.00499999989
74, 0.216657713, 0.0382025987, 0.00499999989
75, 0.234853536, 0.0596886948, 0.00499999989
76, 0.236353859, 0.0416755639, 0.00499999989
77, 0.254424661, 0.06313961, 0.00499999989
78, 0.25605002, 0.0451485254, 0.00499999989
79, 0.273995787, 0.0665905327, 0.00499999989
80, 0.275746167, 0.0486214906, 0.00499999989
81, 0.293566912, 0.0700414479, 0.00499999989
82, 0.295442313, 0.0520944521, 0.00499999989
83, 0.313138068, 0.0734923631, 0.00499999989
84, 0.315138489, 0.0555674173, 0.00499999989
85, 0.332709193, 0.0769432858, 0.00499999989
86, 0.334834635, 0.0590403788, 0.00499999989
87, 0.352280319, 0.080394201, 0.00499999989
88, 0.354530782, 0.062513344, 0.00499999989
89, 0.371851444, 0.0838451236, 0.00499999989
90, 0.374226958, 0.0659863055, 0.00499999989
91, 0.39142257, 0.0872960389, 0.00499999989
92, 0.393923104, 0.0694592744, 0.00499999989
93, 0.410993695, 0.0907469541, 0.00499999989
94, 0.41361925, 0.0729322359, 0.00499999989
95, 0.430564821, 0.0941978768, 0.00499999989
96, 0.433315426, 0.0764051974, 0.00499999989
97, 0.450135946, 0.097648792, 0.00499999989
98, 0.453011572, 0.0798781589, 0.00499999989
99, 0.469707072, 0.101099707, 0.00499999989
100, 0.472707719, 0.0833511278, 0.00499999989
101, 0.489278197, 0.10455063, 0.00499999989
102, 0.492403865, 0.0868240893, 0.00499999989
103, -0.489278197, 0.10455063, -0.00499999989
104, -0.492403865, 0.0868240893, -0.00499999989
105, -0.469707072, 0.101099707, -0.00499999989
106, -0.472707719, 0.0833511278, -0.00499999989
107, -0.450135946, 0.097648792, -0.00499999989
108, -0.453011572, 0.0798781589, -0.00499999989
109, -0.430564821, 0.0941978768, -0.00499999989
110, -0.433315426, 0.0764051974, -0.00499999989
111, -0.410993695, 0.0907469541, -0.00499999989
112, -0.41361925, 0.0729322359, -0.00499999989
113, -0.39142257, 0.0872960389, -0.00499999989
114, -0.393923104, 0.0694592744, -0.00499999989
115, -0.371851444, 0.0838451236, -0.00499999989
116, -0.374226958, 0.0659863055, -0.00499999989
117, -0.352280319, 0.080394201, -0.00499999989
118, -0.354530782, 0.062513344, -0.00499999989
119, -0.332709193, 0.0769432858, -0.00499999989
120, -0.334834635, 0.0590403788, -0.00499999989
121, -0.313138068, 0.0734923631, -0.00499999989
122, -0.315138489, 0.0555674173, -0.00499999989
123, -0.293566912, 0.0700414479, -0.00499999989
124, -0.295442313, 0.0520944521, -0.00499999989
125, -0.273995787, 0.0665905327, -0.00499999989
126, -0.275746167, 0.0486214906, -0.00499999989
127, -0.254424661, 0.06313961, -0.00499999989
128, -0.25605002, 0.0451485254, -0.00499999989
129, -0.234853536, 0.0596886948, -0.00499999989
130, -0.236353859, 0.0416755639, -0.00499999989
131, -0.21528241, 0.0562377758, -0.00499999989
132, -0.216657713, 0.0382025987, -0.00499999989
133, -0.195711285, 0.0527868606, -0.00499999989
134, -0.196961552, 0.0347296372, -0.00499999989
135, -0.176140159, 0.0493359417, -0.00499999989
136, -0.177265391, 0.031256672, -0.00499999989
137, -0.156569034, 0.0458850227, -0.00499999989
138, -0.157569245, 0.0277837086, -0.00499999989
139, -0.136997893, 0.0424341038, -0.00499999989
140, -0.137873083, 0.0243107453, -0.00499999989
141, -0.117426768, 0.0389831886, -0.00499999989
142, -0.11817693, 0.020837782, -0.00499999989
143, -0.0978556424, 0.0355322696, -0.00499999989
144, -0.098480776, 0.0173648186, -0.00499999989
145, -0.0782845169, 0.0320813507, -0.00499999989
146, -0.0787846223, 0.0138918543, -0.00499999989
147, -0.058713384, 0.0286304336, -0.00499999989
148, -0.0590884648, 0.010418891, -0.00499999989
149, -0.0391422585, 0.0251795147, -0.00499999989
150, -0.0393923111, 0.00694592716, -0.00499999989
151, -0.0195711292, 0.0217285976, -0.00499999989
152, -0.0196961556, 0.00347296358, -0.00499999989
153, 0., 0.0182776786, -0.00499999989
154, 0., 0., -0.00499999989
155, 0.0195711292, 0.0217285976, -0.00499999989
156, 0.0196961556, 0.00347296358, -0.00499999989
157, 0.0391422585, 0.0251795147, -0.00499999989
158, 0.0393923111, 0.00694592716, -0.00499999989
159, 0.058713384, 0.0286304336, -0.00499999989
160, 0.0590884648, 0.010418891, -0.00499999989
161, 0.0782845169, 0.0320813507, -0.00499999989
162, 0.0787846223, 0.0138918543, -0.00499999989
163, 0.0978556424, 0.0355322696, -0.00499999989
164, 0.098480776, 0.0173648186, -0.00499999989
165, 0.117426768, 0.0389831886, -0.00499999989
166, 0.11817693, 0.020837782, -0.00499999989
167, 0.136997893, 0.0424341038, -0.00499999989
168, 0.137873083, 0.0243107453, -0.00499999989
169, 0.156569034, 0.0458850227, -0.00499999989
170, 0.157569245, 0.0277837086, -0.00499999989
171, 0.176140159, 0.0493359417, -0.00499999989
172, 0.177265391, 0.031256672, -0.00499999989
173, 0.195711285, 0.0527868606, -0.00499999989
174, 0.196961552, 0.0347296372, -0.00499999989
175, 0.21528241, 0.0562377758, -0.00499999989
176, 0.216657713, 0.0382025987, -0.00499999989
177, 0.234853536, 0.0596886948, -0.00499999989
178, 0.236353859, 0.0416755639, -0.00499999989
179, 0.254424661, 0.06313961, -0.00499999989
180, 0.25605002, 0.0451485254, -0.00499999989
181, 0.273995787, 0.0665905327, -0.00499999989
182, 0.275746167, 0.0486214906, -0.00499999989
183, 0.293566912, 0.0700414479, -0.00499999989
184, 0.295442313, 0.0520944521, -0.00499999989
185, 0.313138068, 0.0734923631, -0.00499999989
186, 0.315138489, 0.0555674173, -0.00499999989
187, 0.332709193, 0.0769432858, -0.00499999989
188, 0.334834635, 0.0590403788, -0.00499999989
189, 0.352280319, 0.080394201, -0.00499999989
190, 0.354530782, 0.062513344, -0.00499999989
191, 0.371851444, 0.0838451236, -0.00499999989
192, 0.374226958, 0.0659863055, -0.00499999989
193, 0.39142257, 0.0872960389, -0.00499999989
194, 0.393923104, 0.0694592744, -0.00499999989
195, 0.410993695, 0.0907469541, -0.00499999989
196, 0.41361925, 0.0729322359, -0.00499999989
197, 0.430564821, 0.0941978768, -0.00499999989
198, 0.433315426, 0.0764051974, -0.00499999989
199, 0.450135946, 0.097648792, -0.00499999989
200, 0.453011572, 0.0798781589, -0.00499999989
201, 0.469707072, 0.101099707, -0.00499999989
202, 0.472707719, 0.0833511278, -0.00499999989
203, 0.489278197, 0.10455063, -0.00499999989
204, 0.492403865, 0.0868240893, -0.00499999989
*ELEMENT, TYPE=C3D8R, ELSET=Eall
1, 3, 4, 2, 1, 105, 106, 104, 103
2, 5, 6, 4, 3, 107, 108, 106, 105
3, 7, 8, 6, 5, 109, 110, 108, 107
4, 9, 10, 8, 7, 111, 112, 110, 109
5, 11, 12, 10, 9, 113, 114, 112, 111
6, 13, 14, 12, 11, 115, 116, 114, 113
7, 15, 16, 14, 13, 117, 118, 116, 115
8, 17, 18, 16, 15, 119, 120, 118, 117
9, 19, 20, 18, 17, 121, 122, 120, 119
10, 21, 22, 20, 19, 123, 124, 122, 121
11, 23, 24, 22, 21, 125, 126, 124, 123
12, 25, 26, 24, 23, 127, 128, 126, 125
13, 27, 28, 26, 25, 129, 130, 128, 127
14, 29, 30, 28, 27, 131, 132, 130, 129
15, 31, 32, 30, 29, 133, 134, 132, 131
16, 33, 34, 32, 31, 135, 136, 134, 133
17, 35, 36, 34, 33, 137, 138, 136, 135
18, 37, 38, 36, 35, 139, 140, 138, 137
19, 39, 40, 38, 37, 141, 142, 140, 139
20, 41, 42, 40, 39, 143, 144, 142, 141
21, 43, 44, 42, 41, 145, 146, 144, 143
22, 45, 46, 44, 43, 147, 148, 146, 145
23, 47, 48, 46, 45, 149, 150, 148, 147
24, 49, 50, 48, 47, 151, 152, 150, 149
25, 51, 52, 50, 49, 153, 154, 152, 151
26, 53, 54, 52, 51, 155, 156, 154, 153
27, 55, 56, 54, 53, 157, 158, 156, 155
28, 57, 58, 56, 55, 159, 160, 158, 157
29, 59, 60, 58, 57, 161, 162, 160, 159
30, 61, 62, 60, 59, 163, 164, 162, 161
31, 63, 64, 62, 61, 165, 166, 164, 163
32, 65, 66, 64, 63, 167, 168, 166, 165
33, 67, 68, 66, 65, 169, 170, 168, 167
34, 69, 70, 68, 67, 171, 172, 170, 169
35, 71, 72, 70, 69, 173, 174, 172, 171
36, 73, 74, 72, 71, 175, 176, 174, 173
37, 75, 76, 74, 73, 177, 178, 176, 175
38, 77, 78, 76, 75, 179, 180, 178, 177
39, 79, 80, 78, 77, 181, 182, 180, 179
40, 81, 82, 80, 79, 183, 184, 182, 181
41, 83, 84, 82, 81, 185, 186, 184, 183
42, 85, 86, 84, 83, 187, 188, 186, 185
43, 87, 88, 86, 85, 189, 190, 188, 187
44, 89, 90, 88, 87, 191, 192, 190, 189
45, 91, 92, 90, 89, 193, 194, 192, 191
46, 93, 94, 92, 91, 195, 196, 194, 193
47, 95, 96, 94, 93, 197, 198, 196, 195
48, 97, 98, 96, 95, 199, 200, 198, 197
49, 99, 100, 98, 97, 201, 202, 200, 199
50, 101, 102, 100, 99, 203, 204, 202, 201
** 支点
*Nset, nset=ThreePoints
1, 2, 51, 52, 101, 102, 103, 104, 153, 154, 203, 204
** 除了支点的其余节点
*Nset, nset=Others
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136
137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152
155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170
171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202
*MATERIAL, Name=EL
*ELASTIC
2.1e+11, 0.3
*DENSITY
7850
*SOLID SECTION, Elset=Eall, Material=EL
*STEP
*FREQUENCY,STORAGE=YES
20
** BOUNDARY CONDITIONS**定义其余点不发生平面外运动
*Boundary
ThreePoints, 1, 1, 0
ThreePoints, 2, 2, 0
ThreePoints, 3, 3, 0
ThreePoints, 4, 4, 0
ThreePoints, 5, 5, 0
Others, 3, 3, 0
Others, 4, 4, 0
Others, 5, 5, 0
**
** OUTPUT REQUESTS
*NODE FILE
U
*EL FILE
S, E
*END STEP
log.frequency
************************************************************
CalculiX Version 2.20, Copyright(C) 1998-2022 Guido Dhondt
CalculiX comes with ABSOLUTELY NO WARRANTY. This is free
software, and you are welcome to redistribute it under
certain conditions, see gpl.htm
************************************************************
You are using an executable made on Sun Jul 31 18:08:37 CEST 2022
The numbers below are estimated upper bounds
number of:
nodes: 204
elements: 50
one-dimensional elements: 0
two-dimensional elements: 0
integration points per element: 1
degrees of freedom per node: 3
layers per element: 1
distributed facial loads: 0
distributed volumetric loads: 0
concentrated loads: 0
single point constraints: 636
multiple point constraints: 1
terms in all multiple point constraints: 1
tie constraints: 0
dependent nodes tied by cyclic constraints: 0
dependent nodes in pre-tension constraints: 0
sets: 4
terms in all sets: 662
materials: 1
constants per material and temperature: 2
temperature points per material: 1
plastic data points per material: 0
orientations: 0
amplitudes: 1
data points in all amplitudes: 1
print requests: 0
transformations: 0
property cards: 0
STEP 1
Frequency analysis was selected